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ABSTRACT

Double-exposure speckleqrams were made of aluminum

2024-T4 rectangular plates. The double-axposure speckle

technique was applied to the aluminum plates to measure

in-plane translation and rotation and out-of-plane tilt.

Strain and vibrational analyses were also conducted. The

vibrational results were compared with results previously

obtained using double-exposure time average holoqraphy to

ascertain their applicability to Naval Engineering.

Background in Fourier transforms, wave theory, Fraunhofer

diffraction theory, and other areas of physical optics were

investigated to enhance the development of speckle metrology

techniques.

Results of the experiments indicate that sneckle metrology

used in conjunction with holography has significant ootential

for Naval Engineering apolications. Further research is re-

quired to develop these techniques. These procedures currently

are being utilized extensively in the aerospace industry and

automotive research and development areas.
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I. INTRODUCTION

A. BACKGROUND

Laser Speckle, that granular, often annoying pattern pro-

duced upon laser illumination of a diffusely reflecting

object, came into prominence as a holographer's nightmare.

While continuing in that role, it is recognized that laser

speckle, used in double-exposure form, is extremely useful

for speckle photography. Laser speckle is perhaps the

easiest form of laser metrology to exploit because in its

simplest form, the equipment required for speckle image

forming and processing requires only single beam,

double-exposure, which eliminates the need for vibrational

isolation. Techniques for reduction of the specklegram have

been developed successfully and applied to the measurement

of surface roughness /Tl, 18, 217, vibration /3, 20, 30, 51,

537 and deformation /T2, 537, and displacement /-4, 7, 10,

15, 38, 537 and strain /3, 4, 9, 15, 31-34, 40, 537. A most

convenient form of data reduction for speckle photographs is

based upon Thomas Young's demonstration in the early 1800's

of the interference of light emerging from a dual pinhole

arrangement -137. Thus a new field of speckle metrology

evolved.

B. THESIS OBJECTIVE

The primary objectives of this thesis were to develop

various techniques for measuring in-plane and out-of-plane

24



displacement and analysis of strain and vibrations using

speckle metrology. The objective of using speckle techniques

instead of holography procedures in Naval Engineering is to

enhance the applicability of photographic metrology to the

industrial environment /_16, 21, 44, 557. Holography, as a

form of engineering stress, strain, and vibrational metrology,

is excellent but requires highly sophisticated equipment,

close tolerance set up requirements, and a vibrationless

laboratory atmosphere for exact measurement /_l, 8, 21, 44,

537. With the development of speckle photography, a single

beam, easy to setup, high tolerance system of engineering

metrology is capable of being achieved in an industrial en-

vironment. /21, 447

25
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II. THEORY

A. INTRODUCTION TO SPECKLE METROLOGY

Speckle metrology spans a rather wide variety of tech-

niques, all of which generally fall into one of two cateqories:

direct laser (speckle) photography or speckle interferometry.

/-2, 21, 447 The distinction between the two is somewhat

subtle since both involve photography and both involve inter-

ference. That is, speckle photography depends on the optical

properties of the speckle which involves a condition of inter-

ference. After orocessing the speckle photograph, the

analysis of the interference yields fringes. These fringes

are directly correlated to the object motion. Therefore,

there is no great difference between speckle photography and

speckle interferometry. /21, 447 Hence, if there are regions

in the two images where speckle patterns of each are well

correlated, let the process be referred to as speckle

photography. If, instead, the fringes form as a result of

fluctuations in the correlation of the speckle patterns be-

tween two images, whether or not there is translation be-

tween the correlated portions of the pattern, let the process

be called speckle interferometry.

B. ELECTROMAGNETIC WAVE THEORY

Light, being a form of electromagnetic radiation, is

characterized by its amplitude, wave length (or frequency),

phase, polarization, speed of propagation, and direction of

26



propagation. /-13, 22, 43, 537 Light can be described by

specifying the temporal and spatial dependence of its electric

field vector, E. The simplest type of electromagnetic wave

is the linearly polarized plane wave which has been assumed.

If such a wave is polarized in the V direction and propagates

in the z direction, the three components of E are:

E. -0,
E A cos (t- kz), (1)
E,-0.

Where A is the amplitude of the wave. The circular frequency

w and wave number K are given by

w- 2r

(2)

2v k -- .(3)

where V is the temporal frequency and A is the wave

length. The frequency of light is on the order of 1015HZ.

More generally, the direction light travels is described

by its propagation vector K which has a magnitude K = 2w/A

and points in the direction of propagation. A plane wave is

a wave whose phase at any instant of time is constant at all

points normal to K. If r = xi + YT + xZ is the position

vector of any point in space, as shown in Fig. 1, the

equation of a linearly polarized plane wave is:

e. -0,
4. - Acos(wt-kv), (4)

-0.
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A surface over which phase is constant, in this case the

planes K-r = CONSTANT, is called a wave front.

Y Y

Figure 1. Plane wave of light propagating in the direction

specified by the prooagation vector K. From 'lest

/_537

Lasers emit narrow beams of monochromatic light with

almost perfectly plane wave fronts. Most lasers enit

linearly polarized light. Light from a typical He-Ne con-

tinuous wave (CW) laser has a wavelength, A - 632.8 nm. The

laser emits a beam of about 5 mm. in diameter. Laser light,

as was mentioned previously, is highly coherent.

It was also noted previously that the frequency of light

was on the order of 10 15Hz. Practical detectors, such as the

eye and photographic film, are not capable of responding to

such extremely rapid variations. Rather, they respond to

irradiance I which is the time-average energy flux of the

28



light wave. Using electromagnetic wave theory, it can be

shown that

I -ev<E> (5)

where e is the electrical permittivity of the medium in

which light travels; v is the speed of propagation. The

key point is that the irradiance is proportional to the time

average of the electrical intensity vector squared; the time

average is indicated by <>

C. DIFFRACTION THEORY

1. Derivation of the Presnel-Kirchhoff Diffraction
Formula

According to the HUYGEN-FRESNEL theory /37, the light

disturbance at a point P arises from the superposition of

secondary waves that proceed from a surface situated between

this point and the light source.

Consider a strictly monochromatic wave

V(x,y,z,t) = U(x,y,z) eiwt (6)

In a vacuum, the space-dependent part satisfies the

time-independent (Homogeneous) wave equation.

(V2 + k2) U - 0 (7)

where K -W/c. This is known as the lelmholtz equation.

Let v be the volume bounded by a closed surface S,

and let P be any point within the surface; (see Fig. 2).

29



Asume that U nossesses continuous first and second order

partial derivatives within and on the surface. If U' is

any other function which satisfies the same continuity

requirements as U, then by Green's theorem

fj(UV3U' - U'V2W)dv = J.(UU- - WE) (8)

where a )/an denotes differentiation along the inward normal

to S. If U' also is a solution to the Helmholtz equation,

i.e., if

(M + k)U' = o,
(9)

then it follows that the integrand on the left of equation

(8) vanishes at every point of v and consequently

J, u ' au o. (10)

Figure 2. Derivation of the Helmholtz-Kirchhoff integral

theorem: region of integration. From Born and

Wolf /_13_7
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Let U' (x,y,z) = eikS/s, which is a spherical wave

converginq to the point P(sO), where s denotes the distance

from P to the point (x,y,z). This function has a singular-

ity at s = 0; and since U6 was assumed to be continuous and

differentiable, P must be excluded from the domain of in-

tegration. Surrounding P with a small sphere of radius c, the

integration is expected throughout the volume between S and

the surface S' of this sphere. In place of equation (10)Ii

ff+Jf~ T ~ - dS =0, (1

whence

f. u s" & -fIf .T (,--' .
1U (12)

where 0 denotes an element of the solid angle. Since the

integral over S is independent of c, the integral on the

right-hand side may be replaced by its limiting value of

c P 0. The first and third terms in the integral qive no

contribution in the limit, and the total contribution of

the second term is

dS. (13)

This equation is known as the Kirchhoff inteqral

theorem. It relates the value of any scalar wave function
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at any point P inside an arbitrary closed surface to the

value of the wave function at the surface.

Note that as K * 0, the time-independent wave

equation (9) reduces to Laplace's equation v2U = 0, and

equation (13) goes into the formula of potential theory.

U(P) ff(U ( Q dS. (14)

Only monochromatic waves will be analyzed, but a

general form of Kirchhoff's theorem could be derived which

applies to waves not necessarily monochromatic.

Consider a monochromatic wave from a point source

P0 propagated through an opening in a plane opaque screen,

and let P be the point at which the light disturbance is

to be determined. It is assumed that the linear dimensions

of the opening, while large compared to the wave length of

light, are small compared to the distances of both P0 and P

from the screen.

To find the disturbance at P, Kirchhoff's integral

is taken over the surface S formed, as seen in Fig. 3, by:

(1) the opening A, (2) a portion B of the non-illuminated

side of the screen, and (3) a portion C of a large sphere of

radius R, centered at P which, together with A and B, forms

a closed surface.

Kirchhoff's theorem then gives
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1 ,1U(P) [fLf fL~ffJ u~()-~'-S

where S is the distance of the element ds from P and

denotes the differentiation along the inward normal to

the surface of integration.

The values of U and aU/an on A, B, and C which

should be substituted into equation (15) are never exactly

known. However, it is assumed that everywhere on A, except

in the neighborhood of the rim of the opening, U and aU/an
will not appreciably differ from the values obtained in the

absence of the screen and that on B these quantities will

be equal to zero.

Then Kirchhoff set

aU aU")
oud: U = Ulf), " (16)

3U
on .: U=0 =0.,

where

UAeh 3U") Ae' r ii

-k = A M cos (n, r) (17)

are the values of U relating to the incident field (see

Fig. 3b) and A is a constant. The approximations of equa-

tion (16) are called Kirchhoff's boundary conditions and
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are the basis of Kirchhoff's diffraction theory.

(a)

(a) Surface of integration (b) Definition of angles

Figure 3. Illustrating the derivation of the Fresnel-

Kirchhoff diffraction formula. From Born and

Wolf /-13_7
It remains to consider the contribution from the

spherical portion C. if the radius R is sufficiently large

so that at the time when the disturbance at P is considered

no contributions from C could have reached P, then the

integral over C will vanish. Neglecting the normal terms

1/r and 1/s in comparison to k, the Fresnel-Kirchhoff

diffraction formula is obtained

Closer consideration of the Presnel-Kirchhoff dif-

fraction integral, equation (18) ,shows, as the.

element ds explores the domain of integration, (r + s) will

in general change by many wave lengths, so that the factor
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ik (r +s)
e will oscillate rapidly. On the other hand,
the distances of the points P and P from the screen are

0

large compared to the linear dimensions of the anerture,

and therefore the factor /cos (n,r) - cos (n,s)7 will

not vary appreciably over the aperture. All angles are

assumed to be small. The factor /-cos (n,r) - cos (n,s)7

may be replaced by cos 6 , where 6 is the angle between the

line P P and the normal to the screen (as seen in Fiq. 4).o

Finally, the term 1/rs may be replaced by l/r's', where

r' and s' are the distances of P0 and P from the origin re-

spectively. The Kirchhoff-Fresnel equation then reduces

to

U(P)~ irr (19)

Cartesian coordinates are used with the origin in

the aperture at 0 and with the x and y axes in the plane

of the aperture and the positive z direction to point into

the half space that contains the point P of observation (see

Fig. 4).

Figure 4. Diffraction at an aperture in a plane screen.

Modified from Born and Wolf C13_7
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If (xoYozo) and x,y,z) are the coordinates of P0

and P respectively, and ( , ) are the coordinates of a

point Q in the aperture, then

(20)
S(z - f)' + (Y - 10) + 22,

I2
r"2= ge + Y02 + 20. (21)

0, . X + 3 + A*

-- r'3 - (xo + Yol0) + ' + 17',-- 8" -2( + )+ P + 772. (2 2 )

Since the linear dimensions of the aperture are small con-

pared to both r' and s', r and s may be expanded as a power

series in &/r', n/r', &/r', n/r'.

X61 r " + yet) + P + ns' (zof + YoW)
e°  2e" 2r"2

+ + + noW+WS(23)

Substituting from equation (23) into equation (19) gives

(P) -A I ,J € La (24)
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where

-(Jl Z,Jqfl _ ze+&# +,+ 2  p+ (z4+y,,,i)' _(z +y'm)' (5
414+yn f+ n+ +r 2'+P+1 +yf . (25)1 0 .9) 2r" '8 2 r' 3 2 0 s

The first two directional cosines are (10 , T ° ) and (l,m)

1. ,(26)

and equation (27) may be written in the form

NO),fl i-l)+ (mo =)17 +it1 + 72) (to +o?1)' (I$ + mi?) (27)
7V ' a'

The problem of determininq the light disturbance at

P has been reduced to the evaluation of the integral in

equation (24). The evaluation can be simplified for two cases

of particular interest. The quadratic and higher terms in

and n may be neglected in f for Fraunhofer diffraction; when

the quadratic terms cannot be neglected, Fresnel diffraction

is being represented. Fortunately, the simpler case of

Fraunhofer diffraction is of much greater imoortance in

optics. /13_7
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2. Fraunhofer Diffraction

Fraunhofer diffraction occurs when both the incident

and diffracted waves are effectively plane. This will be the

case when the distances from the source to the diffracting

aperture and from the aperture to the receiving point are

both large enough so that the curvatures of the incident and

diffracted wave can be neglected (see Fig. 5a).

V If either the source or the receiving point is close

enough to the diffracting aperture so that the curvature of

the wave is significant, then Fresnel diffraction occurs (see

Fig. 5b).

MuApeMUMs
NI'S

ToP P

(a) Fraunhofer case (b) Fresnel case

Figure 5. Diffraction by an aperture. From Cowley /7_7

The wave is effectively plane over the aperture if

the second order and higher terms are negligible. Strictly

speaking, these terms disappeat only in the limiting case

r'* o, s' M , i.e., when both the source and the point

of observation are at infinity. It is, however, evident

that the second order terms do not contribute appreciably

to the integral if
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+ + m() + 01 _+_2 r (28)

The conditions under which equation (28) will be

satisfied exist when

> + and s'l ( + 1')). (29)

or if

and ~(30)

The conditions in equation (29) give estimates for

r' and s' for which the Fraunhofer representation may be

used.

In the case of Fraunhofer diffraction, the four quan-

tities 1o, m 0 , X, and m enter equation (27) only in the

combinations

Is,-l. M-Me. (31)

The governing rraunkofer diffraction integral may

then be written
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11(P) 0 fe&P~fddi

-iE =ICID (32)

where c is the constant term in front of the integral of

equation (24).

Fraunhofer diffraction patterns for apertures of

various forms (rectangle and circular, specifically) will

be studied in detail.

a. Rectangular aperture

Consider first a rectangular aperture of sides

2a and 2b. With origin 0 at the center of the rectangle

and with n and axes parallel to the sides (see Fig. 6).

Figure 6. Rectangular aperture. From Born and Wolf /-13.7

The Fraunhofer diffraction integral then becomes

(P ) - f -f : + "- a vd (3 3 )
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Now

- - - -,= 2 sin --, (34)

with a similar form for the integral of equation (33) taken

with respect to dn from -b to b.

Hence the intensity is given by

1(P) = IU(P)I2 (35)
(snkpa krn

The function y = (sin x/x)2 is displayed in

Fig. 7. It has a principal maximum of y = 1 at x = 0

and zero minima at x = ±w, ±2yr, ±3w... The roots asymptoti-

cally approach the values x = (2m + 1)w/2, m being an

integer (see Table 1).

72 2
I41

. ( ) I

'II

I y= (in /x)Figure 7. Fraunhofer diffraction at a rectangular aperture.
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Within each rectangle formed by nairs of

consecutive dark lines of the Fourier transform of the

aperture the intensity rises to a maximum; all their maxi-

mums are, however, only a small fraction of the central

maximum of the Fourier transform and decrease rapidly with

increasing distance from the center (see Fig. 8). The

larger the rectangular opening, the smaller the effective

size of the diffraction pattern of the Fourier transform.

TABLE 1

The First Five Maxima Of The Function y = (sin x/x}

2
x y = (sin x/x)

01

1.430 = 4.493 0.04718

2.459 - 7.725 0.01694

3.470 =10.90 0.00834

4.479 =14.07 0. 00503
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Figure 8. Fraunhofer diffraction pattern of a rectangular

aperture

b. Circular Aperture

The Fraunhofer diffraction pattern for a cir-

cular aperture will be investigated. Using polar coordinates,

let ( P, 6) be the polar coordinates of a particular point in

the aperture:

(36)

and let ( w,* ) be the coordinates of a point P in the

diffraction pattern, referred to the georetrical image of

the source:

- - --P P , W~ ( 3 7 )
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From the definition of v and q, it follows that w = 2 + q2

is the sine of the angle which the direction (p,q) makes

with the central direction p = q = 0. The diffraction in-

tegral of equation (32) now becomes, if a is the radius of

the circular aperture,

U(P) - MOOda (38)

A Now using the integral representation of the Bessel

function Jn (z):

Jo (39)

Equation (38) therefore reduces to

U(P) a 2.xCJo(k)pdp. (40)

Also, the recurrence relationship is

d I
{z+IJ, (z) = Z-'J(), (41)

giving for n - 0, on inteqration

(a) (42)
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From equations (40) and (42) it follows that

[2.J(,k ,)1, (43)

uP c D Lr-j 'kw
L- Lkaw'

2where D = w a Hence the intensity is given by

Zf(a)(44)
1(P) = IU(P)I'-- [= -k-z-- 1  (44)

where

1,= C2D = ED/12 .

Equation (44) is the formula derived by Airy in somewhat

different form. /137

The intensity distribution in the neighborhood

of the geometrical image is characterized by the function
2

Y = (2J1 (x)/x) shown in Fig. 9a. This function y has its

principle maximum y = 1 at x = 0, and with increasing x, it

oscillates with gradually diminishing amplitude in a similar

way to the function (sin x/x)2 which was discussed previously.

The intensity is zero (minimum) for values of x given by

J1 (X) .- 0.

The minima are no longer equidistant (see Table 2).

The positions of the secondary maxima are given by the values

of x that satisfy the equation.

d = (x)/x 0

x LJl~4
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(a) The function

2J1 (x)/x) 2

(b) Airy disk I:

Figure 9. Fraunhofer diffraction pattern of a circular
aperture. From Fowles / 22 7

TABLE 2

The First Few Maxima And Minima Of The Function

2

x (2J 1 (x)/x)2

0 1Max.

1.220 - 3.833 0 Min.

1.635 - 5.136 0.0175 Max.

2.233 - 7.016 0 Min.

2.679 - 8.417 0.0042 Max.

3.238 - 10.174 0 Min.

3.699 - 11.620 0.0016 Max.
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or using the equation ._ ,W (45)

by the roots of equations J2(x) 0 with increasing

the separation between two successive minima or maxima

approach the value of w as in the case of the rectangular

aperture.

The results show that the pattern consists of

a bright disk, centered on the geometrical image at

p - q = 0 of the source and surrounded by concentric

bright and dark rings (see rigs. 9b and 10).

Figure 10. Fraunhofer diffraction Pattern of a circular
aperture (the Airy pattern) 6 mm in diameter,
magnification 50X, mercury yellow liqht X
5790A.
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The intensity of the bright rings decreases

rapidly with increasing radius; only the first or second

rings are bright enough to be visible to the naked eye.

The bright central area is known as the Airy disk (see Fig.

10). The Airy disk extends to the first dark ring whose

size is given by the first zero of the Bessel function,

namely x - 3.833. The angular radius of the first dark

ring is thus given by

sin = .22X e (46)

which is valid for small anqles, 8 Here a is the radius

of the aperture.

The image of a distant point source formed at the

focal plane of a camera line is actually a Fraunhofer dif-

fraction pattern for which the aperture of the lens is the

opening. Thus the image of a composite source is a super-

position of many Airy disKs. The resolution of detail in the

image, therefore, depends on the size of the individual Airy

disks. If D is the diameter of the lens, then the angular

radius of the Airy disk is approximately 1.22X/D. This is

also the approximate minimum angular separation between two

equal point sources such that they are just barely able to

be resolved, because at this angular separation, the central

maximum of the image of one source falls on the first minimum

of the other (see Fig. 11). This condition for optical reso-

lution is the Rayleigh criterion. The Rayleigh criterion

0:



does not always give an absolute minimum separation for

resolution, but it is almost always used because of its

simplicity. /T3, 17, 22, 537

Saddle point

./

Figure 11. The Rayleiqh criterion.

D. FOURIER TRANSFORMS

1. Convolutions

Most considerations of diffraction involve the use

of the Fourier transform in one form or another. One of the

most important properties of the Fourier transform involves

the conceot of a convolution, or convolution integral;

and for both this and the Fourier transform, it is convenient

to use delta-functions.

Consider a special delta function, the Dirac delta

function. A Dirac delta function at x = a is defined by

tO for x*a

for x a

and (47)

The delta function at x = 0, (x), can be con-

sidered as the limit of a set of real continuous functions,
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such as Gaussians:

6(x) =a[I , exp -a2x2}]" (48)

As a tends to infinity, the Gaussian function has

a maximum value tending to infinity and a half-width (1/a)

tending to zero, but the integral over the function is always

unity. The delta function can be used as a convenient no-

tation for any function of integral unity in the form of a

sharp peak having a width so small it is not experimentally

significant.

The definition of a delta function is

S(x)= f exp{2fixy}dy, (49)

'In one dimension, the convolution integral (or con-

volutions product) of two functions f(x) and g(x) is defined

as

C14x AfX) A ex) a f( X)g(x-X)dX. (50)

By a simple change of variable.

f(x) g(x)u f g(X)f(x- X)dX g() ,fx). (51)
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The identity operation is the convolution with the

Dirac delta function:

f(x) * ) =f(x) ,
(51a)

f(x) * 6(x-a) =f(x- a).

For a general intensity distribution, I(x), each

sharp spectral line or each part of a broader spectral line

will be "spread out" by the "spread-function" q(x), so that

the recorded intensity, IOBS will be less sharply peaked or

less well resolved than the original spectrum (see Fiq. 12).

g(x-X)
=W R* g(x)C(x)1xIx)

I(X).g(x-X)

Figure 12. A convolution operation. An intensity function
I(x) representing a spectral line is multiplied
by the transmission function g(x-X) of a slit,
centered at X=x; the product of these two functions
is integrated to give the measured intensity IOBS(x).

Likewise, the blurring of an image due to the im-

perfections of a camera lens may be described in terms of

convolution of the ideally perfect image intensity with

some two dimensional function g(x,y). For a point source



of light, the ideal image would be a two dimensional

function S(x,y). The spreading gives

lobs a g(x,y) * 8(x,y) = g(x,y). (52)

For a general object, consisting of a large number

of independently emitting point sources and having an ideal

image, IolX,y),

1 OBS = g(x,y) * 10 (x,y) (53)

Thus each point of the original intensity distri-

bution is spread into a disk of intensity of light and the

overlapping of these disks gives a blurring and loss of

resolution of the image.

The Fourier transform of a one-dimensional function

f x) is defined as

9 ((x)) -F(u)z f (x) exp [2Mux}d .
-- (54)

The inverse transform, F l, is defined so that

f(x) - -I [9{f(x)}] * ~u) exp {-2Mux}du. (55)

52



Here the convention of including 2w in the exponent

is followed. This convention is commonly used in considera-

tions of diffraction in order to avoid the necessity of

adding a constant multiplier 2w in equations (54) or (55)./T77

2. Diffraction Analysis

The amplitude of scattering from an object in the

Fraunhofer diffraction approximation, whether derived from

the Kirchhoff formulation or from scattering theory, is de-

scribed by a Fourier transform integral. Thus the diffraction

amplitude may be described in terms of a distribution in

Fourier transform space, often referred to as "reciprocal

space."

P The individual properties of Fourier transforms will

not be expounded on here, as they are well documented in

many references readily available. The remainder of this

section will demonstrate the application of Fourier trans-

forms and their relationship to diffraction.

The amplitude distribution of a very small source or

the transmission through a very small aperture (or slit) in

one dimension may be described as 6(x) or by ax-a) when it

is not at the origin. The Fourier transform used to derive

the Fraunhofer diffraction pattern is

x (56)

7-8(x-a) - exp {2iua}.

To illustrate the above, the following integral is written:
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f 6(X-a)exp{2ri}dx. (57)

The integrand is zero except for x = a. Hence the integral

may be written

-' - (58)
exp {2'iua} 8(x-a)dx = exp {2iriu}.

The amplitude of the diffraction pattern will be

proportional to F (u) = F 6(x-a) where u = 1/1 . The
2

intensity observed will be proportional to F(u) 2 1.

The Fourier transform of a plane wave with respect

to t only, gives

9, exp {2ri(P1 t-x/A)} = 8(v+i) exp {-2ix/ 1}, (59)

i.e., the delta function in frequency and a plane wave in

real space. Fourier transform with respect to x gives

7xexp{2i(vl tx/X)} exp {2 vl }8(u_ 1 1) '  (60)

i.e., a sinuisoidal variation in time and a delta function

in reciprocal space. Transforming with respect to both

variables gives
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7x,t exp{22 ri(' I r-x/' I )} = 6(+v I ) 6(u- I/Al) (61)

which is a delta function in both frequency and reciprocal

space.

The Fourier transform of all possible waves which

can exist in a given medium with respect to both x and t

is a set of points defining the relationship between the

frequency v and A-1 (or between the angular frequency

w and K) which is known as the dispersion relation for that

type of wave and the particular medium.

For the translation of an object, the Fourier trans-

form is written,

'F(x-a) = f(x) (x-a)] uF u) exp {21dh} (62)

Thus the translation of the object in real space has the

effect of multiplying the amplitude in reciprocal soace by

a complex exponential. The intensity eistribution of the

Fraunhofer diffraction pattern is given by F(a) 2, which

is independent of translation.

a. Rectangular And Circular Apertures

The intensity distribution for both the rec-

tangular and circular apertures is important when studying

Fraunhofer diffraction. The transmission function of a

rectangular aperture in two-dimensional form may be written
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! if Jxj<a/2 and jyl <bi2,
f(x,y) -- (63

0 (63)

Then

e/2 b12
F(uU) f exp 2iriuxldx f exp{2irivy}dy ,b.in(v.) sin(rbu)

-.12 -b12 wau jbu ' (64)

so that, for diffraction from a rectangular aperture, the

intensity distribution is

. /(, u) a~b2 in2(=u) sin2(bu)

(ffau) 2  (irbu)2  (65)

The maximum intensity at u 0 v = 0 is a2b2.

Zeros occur at intervals of a"1 along the u direction,

which is paralll to the x axis and at b I intervals along

the Vdirection (see Fig. 13).

V

0 0

aq(X,Y) o 0

Figure 13. Diagram suggesting the form of the rourier
transform of a rectangular aperture. From
Cowley /17 7

56



Thus the intensity function falls off through decreasing

oscillations in each direction. The dimensions of the dis-

tribution in reciprocal space are inversely proportional

to the dimensions in real space.

The transmission function for a circular

aperture is written

ir (X2+y 2 )uJ2 <a12,
A'X,Y) 10 ( 66 )

The Fourier transform is best carried out by

writing the Fourier integral in plane polar coordinates.

The result is:

F(u)i- ( Mj)  (67)

where u is the radial coordinate and J (X) is the first order

Bessel function. The function J1 (x)/x is similar to the form

(sin x)/x but has a somewhat broader central maximum with

the first zero at 1.22a " instead of a

b. Single And Double Exposure Specklegrams

Before calculating the diffraction pattern from

a double-exposure specklegram, first consider a single-ex-

posure photographic transparency of an object illuminated

by laser light. The recorded image is speckled. If a small

diameter laser beam is passed through a portion of the

transparency, the aperture w will be the amplitude trans-

mission function R(x,y) inside the illuminated area. Thus
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U = cF.(R(x,Y) (68)

and

I0a PF[R (xY)] F [R (x, Y)] (69)

Now for a double exposure speckle photographic

transparency where the object has suffered an in-plane

displacement Ax in the x direction between exposures, the

amnlitude transmission function is

R (x,y) -R(x - AN~/2,y) + R(x + Ax/2,y) (70)2

A series expansion of equation (70) yields

,(x,y) =2 [R(xiy) + R@'(x,y) ()+ Ri:L(xY)(~) A ..
(71)

where the prime indicates a differential with respect to

the variable x. The linear pro'nerties of a Fourier transform

provide that

F [gn ix) ] _ (i w ) n F [ g(x)] (72)

where g nWis ten thderivative of the function g(x).

Thus

U -C F[R2 Cx,y)

U -c F [R(x,y )J [2 cos (w, - )



Using equations (72)and (73) and w = K sine

U U 2 cos( A K sin (74)

I1I [i + cos (KA x sine)] (75)

Thus the intensity distribution for a specklegram

is the diffraction halo from a single-exnosure transparency

modulated by Young's fringes. /-3,47

3. Two Dimensional Fourier Transforms

Two-dimensional Fourier transforms are fundamental

to all image formation. The Fraunhofer diffraction pattern

of an obj'ct is the Fourier transform of that object. An

object of low spatial frequency, i.e., an object that has

large details, and wide separation between details, will give

a Fourier transform of small elements that are close together.

An object of high spatial frequency will give maxima that are

wide aDart.

a. Thickness Function

To find the thickness A(x,y) of a lens at any

point (x,y) we split the lens into two Darts, as shown in

Fig. 14, and write the total thickness function as the sum

of the two individual thickness functions,

A (x,y) - A1 (x,y) + A2 (x,y) (76)

Referring to the geometry shown in Figure (14), the thick-

ness A1 (x,y) is given by

59



- I I ~ (77)

Similarly,

A&(My 49A2 - (-Rs - N/R, - X2-i')(8

where we have factored the Positive number ROut of the

square root. Combining equations (76), (77), and (78), the

total thickness function is seen to be

whreA0 01 +A02

Figure 14. Calculation of the thickness function. From
Goodman f72 5..7
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D.

b. Paraxial Aporoximation

The expression for the thickness function can

be substantially simolified if attention is restricted to

portions of the wave front that lie near the lens axis, or

equivalently, if only paraxial rays are considered. Thus we

consider only values of x and y sufficiently small to allow

the following approximations to be accurate:

R - 2R' (80)"z 2= + Y2 X2 + y,(0

- 2R22

The resulting ohase transformation will, of course, represent

the lens accurately over only a limited area, but this

limitation is no more restrictive than the usual paraxial

approximation of geometric optics. Note that equation (80)

amounts to approximation of the spherical surfaces of the

lens by parabolic surfaces. With the help of these approxi-

mations, the thickness function becomes

z'+y(1 ) (81)
&(z~y)-\R 2RR/.

c. Phase transformation

The paraxial approximation to the lens trans-

formation is:

ti(z,y) - exp (jkn1oJ exp [-k(n - _ 5I ( ]
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where tt(x,y) is the lens transformation function, The

physical properties of the lens (that is n, R1 , and R2) can

be combined in a single number f called the focal lenqth;

which is defined by

fg(n-1) - (82)

Thus the phase transformation may be rewritten

x,y) exp [jkmol exp [- j (_' + y2)] (83)

This equation will serve as our basic representation of the

effects of a lens on an incident disturbance.

One of the remarkable and useful Properties of

a converging lens is its inherent ability to perform two

dimensional Fourier transformations.

d. Fourier Transform Configurations

Three separate configurations for performing

the Fourier transform operation are considered (see Fig. 15).

Object

(a)

(a) Object placed against the lens.

Fiaure 15. Fourier Transforminq Configurations.
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*Object

*4

(b)

(b) Object placed in front of lens.

Objet

(C)

(c) Object placed behind lens.

Figure 15. (Continued).

In the material that follows, the illumination

is assumed monochromatic and the distribution of liqht

amplitude across the back focal plane of the lens is of

concern. The front and back focal planes of a lens are

defined as the planes normal to the lens axis situated at

a distance f in front of and in back of the lens re-

spectively. The front of the lens is the side of the lens

the incoming beam strikes first.

(1) Object Placed Against The Lens. For the first

case where the object is placed against the lens, let a plane

object with amplitude transmittance t (x,y) be olaced imme-

diately in front of a converging lens of focal length f, as

shown in Fig. 15a. The object is assumed to be uniformly il-

luminated by a normally incident, monochromatic plane wave of
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amplitude A, in which case the disturbance incident on the

lens is

U(z,y) - Ato(z,y) (84)

The finite extent of the lens aperture can be accounted for

by associating with the lens a pupil function P(x,y) defined

by
P(XY) - I inside the lens aperture

0 otherwise (85)

Thus the amplitude distribution behind the lens becomes,

using equation (83),

U,(z,y) - U,(x,y)P(z,y) exp -j , (z' + Y(86)

The constant phase delay associated with the lens transfor-

mation has been omitted since it does not affect the result

in any significant way.

To find the distribution Uf(xfyf) of field

amplitude across the back focal plane of the lens, the Fresnel

diffraction formula is applied.

Thus, putting z - f,

1p C:,' + /)] +
u,(,Y,)- 2! u'(X,y) (87)

p I (zs + y)] exp [- r +r-+YYI)] dx dy
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where a constant phase factor has been dropped. Substituting

equation (86) in equation (87), the quadratic phase factors

within the integrand are seen to cancel, leaving

- !
J $ (88)

_ Ui(,y)P(x,y) exp [-j - (xz, + y) dy

Thus the field distribution U is proportional to the two-

dimensional Fourier transform of that portion of the incident

field subtended by the lens aperture. When the physical

extent of the object is smaller than the lens aperture, the

factor P(x,y) may be neglected, yielding

A exp [jL(,2. + yii)]
U,(X.)- f_ 2.(:+ ) (89)

Evidently the amplitude and phase of the light at coordinates

(xf yf) are influenced by the amplitude and phase of the

object Fourier component at spatial frequencies

(fx = Xf/Xf fy = Yf/Af). Measurement of the intensity

distribution yields knowledge of the power spectrum of the

object; the phase distribution is of no consequence in such

a measurement. Thus

I,(1,,)- t.(z,y) exp (Xz/ +y) dxdy (90)

(2) Object In Front Of Lens. Consider next

the more general geometry of Fig. 15b. The object, located
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a distance d0 in front of the lens, is illuminated by a

normally incident plane wave of amplitude A. The amplitude

transmittance of the object is again represented by to . In

addition, let F0 (f If Y ) represent the Fourier spectrum of

the light transmitted by the object, and F (f x,f Y ) the Fourier

spectrum of the light incident on the lens; that is,

F'(fx,fr) - T;-At.andFLO 'rl f r) U (91)

Fa ',fr) - F.(x,fy) exp I -jrd.(x' + fr')]

For the moment, the finite extent of the

lens aperture will be neglected. Thus, letting P - 1,

equation (88) can be rewritten

exp [ ' ]+ 11

U,(,,.1 ,) 2 F( , \ / (92)

Substitution of eauation (91) in ecuation (92), gives

Uzy)-exp [ij)(i +- vi)] (2f( f
3)" V T

A exp [j - (X' + x)] f! t.(X.,y.) cxp - . x, + !ouI)] d. dy. (93)
u,(Z,y) -f !-

Thus the amplitude and phase of the light at coordinates

(Xf,Yf) are again related to the amplitude and phase of the

object spectrum at frequencies (xf /)f, yf/Af ). Note that

a phase factor again precedes the transform integral, but

that it vanishes for the very special case d 0 - f.

(3) Object Placed Behind The Lens. Finally, we

consider the case of an object that is placed behind the
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lens, as shown in Fig. 15c. The object again has trans-

mittance to, but is now located a distance d from the focal

plane of the lens. Let the lens be illuminated by a nor-

mally incident plane wave of amplitude A. Then incident on

the object is a spherical wave converging toward the back

focal point of the lens.

In the geometrical-optics approximation, the

amplitude of the spherical wave impinging on the object is

Af/d; the particular region of the object that is illuminated

is determined by the intersection of the converging cone of

rays with the object plane. If the lens is circular of

diameter X, then a circular region of diameter t d/f is illumi-

nated in the object space. The finite extent of this

illuminating spot can be represented mathematically by pro-

jecting the pupil function of the lens along the cone of

rays onto the object yielding an effective oupil function

P [xo(f/d),yo(f/d)] in the object plane. Note that the object

transmittance to will have a finite aperture; the effective

aperture in the object space is thus determined by the inter-

section of the true object aperture with the projected pupil

function. If the object aperture is fully illuminated, then

the projected pupil function may be ignored.

Using a paraxial approximation to the spheri-

cal wave that illuminates the object, the field amplitude

transmitted by the object may be written
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U.(x.,Y.) ' - Fs + , [) t,(x(x.) (94)

assuming Fresnel diffraction from the object plane to the

focal plane
A Aexp[] (2,11+ Y1)]

Ad d (95)

t ,Y.,)P ( -. , y P Lxp (Xr.z + Y.Y/)] dx. dy.

Thus, up to a quadratic phase factor, the focal-plane

amplitude distribution is the Fourier transform of that

portion of the object subtended by the projected lens aper-

ture.

The result represented by equation (95) is

essentially the same result obtained previously when the

object was placed directly against the lens itself. Fow-

ever, an extra flexibility has been obtained in the present

configuration; namely, the scale of the Fourier transform

is under the control of the experimenter. By increasing d,

the spatial size of the transform is increased, at least un-

til the transparency is directly against the lens (i.e., d = f).

By decreasing d, the size of the transform is made smaller. J5_7

E. INTERFERENCE

The phenomenon of interference is central to the subject

matter presented within. To initiate consideration of inter-

ference, two different light waves, E1 and E2, of the same
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frequency are superimposed. Since E - 1 + E2t the irradiance

will be:

- ,(E> - EP + <E ) + 2(E,*E>. (96)

where <> symbolizes the time average or mean. The pro-

portionality constant ev of equation (5) will be neglected

for the remainder of the discussion. From the previously

stated assumption, both waves are linearly polarized in the

same direction. Then

E,- A, s("-k,.r) (97)

E2 - A2cos(o.t-k 2.r+#), (98)

where e is a constant relative phase between the two waves,
and K1 and K2 are the wave propagation vectors for E1 and

E2 respectively. Combining equations (96), (97), and (98)

and carrying out the averaging, then

I- It + 12 + 2V/112 Coss (99)

where where 11 -A 1,12 A22

(100)

and 8 -.

(101)
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where a is the phase difference between the two waves at any

location. The irradiance varies from a minimum value

IMIN = 1  + 12 - 2(I i i2) %  at points where 6 = (2N + 1)

to a maximum value I,.. 1 + 12 + 2( I112)  at points

where 6 - 2Nn , where N is an integer. The irradiance

pattern will be alteinating liqht and dark fringes.

1. Interference From Two Point Sources Emitting Spherical
Waves

A specific important example of interference is that

of two spherical waves emanating from two point sources of

light (see Fig. 16). Assume that light is radiated from

points b and c in phase, that is 8 = 0. The irradiance at

any point Pn in space is given by.equation (99) with the phase

difference being f.

Figure 16. Interference of light emitted by two point
sources, S and S2. Modified from Vest /-537

If Z is the perpendicular distance from the axis formed by

S1S2 to the point Pn and D - d/2 is the distance S 1  2 , then
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r I _X 2 + (d -x) 2  (102)

r2 ;t2 + (d+ x) 2  (103)

The phase at Pn due to S1 and S2 respectively is

Kr I 21- rl/L (104)

Kr2  - 2ir 2/A (105)

where K = 2w/x

The phase difference generated at the point Pn by

S and S2 is then

6 = K(r 1 - r 2 ) (106)

Substituting the values for r1 and r 2

K + (d + x)2 (107)

Assuming the following distance relationships

d/ < < 1

x/I < < 1 (108)

Factoring I out of equation (107) gives

2=K[ld 2xd x2d 2  2xdx2l

using the power identity of
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(1 +x) n + nx + n(n-1)x2  + (109)

and neglecting higher order terms

6 2Kxd/L (110)

Then the locus of points forming a surface of maximum

irradiance is determined by settinq 2rN

where

rI - r2 = 2 =w N X ; N - 0, 1, 2 ... (111)1 2 K

This is the equation of a family of hyperboloids

of revolution about the axis S--S connecting the two point

Ssources.

Two light waves which are capable of interfering

are said to be coherent. Because of the coherence require-

ments, most interference experiments are conducted using

two images of the same physical source.

2. Young's Fringes

A simple division of wave front interferometer is

used to produce Young's fringes. This is shown in Fig. 17

It is simply an opaque screen in which two holes separated

by a distance D have been cut. This screen is illuminated by

a point source located a distance I from the screen and a

distance ys above the center line axis of symmetry of the

screen. The light diffracted by the two holes forms an

interference pattern which can be observed on a screen placed
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some distance I0 away. In practice, y5 y, and D are much

smaller than kand I
S 0

opaque =@an Owvto
with two *onenpssre

Figure 17. Interferometer to form Young's fringes.

The irradiance of each of the l.ight waves at y

therefore will be nearly equal I IS 12 = I0 so equation (99)

becomes

I - 21 0 (1+ Cos a)

1- 41 0 cos 2 ( a/2)

Here the phase difference is 6 - KAI, where At

is the difference in the distance the light travels from

the source S to the observation screen at y on the two

paths.

At 2{ +a (d-y ) 2] + -t [~2+ (d -y) 2}

(113)
[2 + (d + y ) 2] [o 2 + (d + y) 2] j
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Dividing by Is and Io to set the equation up to utilize

the identity of equation (109) and disregarding second

order and higher terms gives

22

+1 (d-y )2 1 dy

0 0(

W -2y d + to [=3,dAt is3 
tof4 3]

(Dys +Dy!

1- 74

" 0 (114)

Know ing that 6 = KAI gives

6-~K[ + ] (115)

Where again K - 2n /X is the wave number. The

irradiance is then equal to

0 I co 2 ( (116)

substituting for 8 into equation (116) gives
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1 410 Cos (117)

which represents parallel fringe spacing of ItD.

3. Scalar Wave Theory

Further consideration of the subject of diffraction,

shows the representation of light waves may be modified.

Seeing that the assumption of unidirectional polarized light

has been made, only one vector component of E need be studied.

In other words, E can be treated as a scalar instead of a

vector. E is then replaced by the scalar quantity U(x,y,z,t),

which is referred to as the optical disturbance. For example,

a monochromatic plane wave is denoted by

U(x,y,z,t) = a(x,y,z) cos(wt - K-r) (118)

Similarly, the expression for any momochromatic wave can be

written in the form

U(x,y,z,t) = a(x,y,z) coswt - e (x,y,z)] (119)

where a(x,y,z) is the real amplitude of the light wave, and

e (x,y,z) is its phase. Of course, the plane wave is a

special case for which 8 (x,y,z) - K'r is constant. Equation

(119) also can be written as

U(x,y,z,t) - Re U(x,y,z) exp it

where t I12 )

LI(x,y,z) a a(xy,z) exp [-i O(xyz)]
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is called the complex amplitude of the liqht. Because the

temporal frequency of light is so high, there is no need to

consider the time dependence ext(-iwt) explicitly. The com-

plex amplitude U(x,yz) contains all the information about

the spatial structure of liqht waves essential to speckle

photography.

The complex amplitude of light emitted from a rough

surface received at a detector perpendicular to that surface

is given by equation (120).

The irradiance of the light at the detector surface

is a more important quantity because that is what is actually

detected. The probability density function for the irradi-

ance, PI (I), is

PI (If < exp (121)

The irradiance of the speckle pattern there obeys

negative exponential statistics. A measure of the contrast

of speckle is the ratio C - aI/ <I> , where I is the

standard deviation of the irradiance, and I is its mean

value. For the distribution given by equation (121), the

sneckle contract is unity. /67

The most probable irradiance in a speckle pattern

is seen to be zero, that is black (see Fig. 18).

F. SPECKLE THEORY

The speckle phenomenon has long been familiar, but only

the introduction of lasers has brought a deeper understanding
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and many new applications to this field. /21 7 Laser

speckles appear whenever an optically rough surface is il-

luminated with highly coherent light. The microscopic,

random height variation of roughness of the surface needs to

be of the order of the wave length of light used to illumi-

nate the object surface or coarser. This encompasses most

surfaces except those highly polished. The optical wave

originating from any moderately distant point consists of a

series of coherent waves, each arising from a different rough

element of the surface. The optical path difference of these

various waves may be several wave lengths. These waves

scattered from the optically rough surface have not only dif-

fering phases but also differing wave amplitudes. The inter-

ference of the dephased, but coherent, secondary waves results

in a granular pattern of intensity called speckle.

1. Speckle Characteristics

Consider the factors which quantitatively determine

the characteristics, size, shape, and intensity form of the

speckle.

Figures (18 a -f ) are photographs of a tyoical

speckle pattern produced by scattering light from a rough

surface.

The physical explanation of speckle is that each point

on the surface scatters the incoming laser light in such a

manner that the scattered light from one point interferes with

that of another point. The randomness of the speckle pattern

itself is generated by the surface roughness which generates

phase differences in the reflected waves upon scatterinq.
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(a) Speckle size imaged by lens of f/2

(b) Speckle size imaged by lens of f/2.8

Figure 18. Micrographs of speckle for various lens aperture
settings, showing the speckle size dependence on
imaging aperture. Image magnification equaled
.137. Microscopic magnification 300X.
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(ci Speckle size imaged by lens of f/4

(d) Speckle size imaged by lens of f/5.6

Figure 18. (Continued)
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(e) Speckle size imaged by lens of f/8

(f) Speckle size imaged by lens of f/16.

Figure 18. (Continued)
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To determine the statistical characteristics of the

irradiance in the observation plane of the speckle, it is

convenient to consider an ensemble average at a single detec-

tion point rather than the whole field of view. It is assumed

that the incident light is monochromatic and linearly polar-

ized, and that its polarization is not changed by the scatter-

ing.

The most important statistical characteristic of laser

speckle is its size. From equation (117), it is seen that any

two points on the object surface separated by a distance Z

give rise to fringes of frequency, f = I/Az. The average

fringe frequency will be

f (L/Xz) (122)f S fMAX 7

where L is the length of the illuminated area in the v

direction and z is the distance from the illuminated object

to the image plane. Hence the irradiance distribution across

a "typical speckle" will be

I(y) = 1 + cos [2 n(Ly/3 Xz)] (123)

where y is the vertical axis value.

The width of the speckle can be described as the dis-

tance between points where I drops off to one-half its maxi-

mum value. This width is 1.5 (A z/Z); then a typical soeckle

width bs would be

-s 1.5 (124)
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To estimate the speckle size in this case, treat the disk

enclosed by the pupil of the lens as a uniformly illuminated

diffuse surface. If the diameter of the lens is D and the

image is formed a distance z from the lens, bs - 1.5 -L-1 , as
D

shown in equation (124), while a more rigorous analysis leads

to a very similar expression

b b I.22( z) (125)bs

if the imaging system is focused on a relatively

distant plane, z - f = focal length of the lens; therefore

f (126)bs = 1.22 (4)26

where f/D is the F number of the lens; typical imagings

systems vary from about f/l.4 to f/32. See equation (148)

for a more exact equation for the speckle size.

The speckle pattern formed by an imaging scattered

He Ne laser light ( X = 632.8 nm) produces the corresponding

speckle size which varies from 1 to 24 micron. See Table 3.

Figures 18(a - f) shows the correlation between F number and

speckle size.

For the experimentation of this thesis, a diffusely

reflecting object was viewed through a lens or imaging system,

as indicated in Fig. 19a.

2. Saeckle Photography

As was stated in the introduction to speckle metrology,

wov diffused laser light is passed through a finite
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aperture, a speckle pattern is formed. ror the science of

holography, speckle is considered noise because of its

limiting effect on fringe clarity. /_l, 217

In Fig. 19d, a double-exposure snecklegram is seen

at a magnification of 300X. Notice the speckle pairs. These

speckle pairs developed due to the correlated motion of the

actual speckle pattern during the double-exposure recording.

Processing of this double-exposure specklegram produces a

Young's fringe pattern from which in-plane translation and

rotation, strain, and vibrational analysis can be analyzed.

There are two prominent advantages of the speckle

process over holography. These advantages are simalicity of

the optical system required for both recording and processing

the image and the relative ease of interpreting the obtained

results.

y IlluminationII A
-I'

O bject Im ae Ifilmi

plans ln
(J|

(a) Photographic plate imaging system

Figure 19. Two-exposure speckle photography for measure-
ment of in-plane translation.
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Transforming
lons

________________________Back

focal
plane

Speckl*

(b) Speckle transparency processing~ system

(c) Fringe pattern formed in the imacre p3lane of recording
system. The object was translated in the x direction
between exposures.

Figure 19. (Continued)
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(d) Double-exposure specklegram magnified 300x.

Figure 19. (Continued)

In-plane displacement will be measured for both

translation and rotation of a rigid, macroscopically-flat

object using the experimental setup described by Figure 19a.

An image of the object surface is formed in the film plane

by a lens of focal length f and a diameter D. The object

distance Zo and the image distance tj are related by the
0

thin lens imagery equation:

7(127)

This equation is approximately valid for real lenses and is

quite accurate when an image is formed using only rays which

are close to the optical axis.

Imagery systems or lenses are specified in terrn of

their relative aperture or F number. The F number is the ratio
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of the focal length f to the diameter of the aperture D. If

the same distant object is imaged by a lens of equal F

number, the average irradiance in their image planes will be

identical.

For an object illuminated by incoming laser light the

image formed in the film plane will be modulated by a random

speckle pattern having a characteristic size bs determined by

the aperture of the imaging lens, as is seen in equation (126).

3. In-olane Translation Measurements (x and y Trans-
lation and Rotation)

If an object translates horizontally by an amount

L the relative phase of the light in each of the variousx
rays that contributes to the formation of the speckle pattern

will be unchanged. The entire speckle pattern will translate

in the film plane of the imaging lens for small translations

of the object to insure there is no decorrelation of the

speckle pattern. The speckle pattern moves a distance m in

the image plane if the object is translated on amount Lx, where

M is the magnification of the imaging lens. Similarly the

speckle pattern in the object plane will translate an amount

MLy if the object is translated an amount Ly.

The amount of speckle motion is independent of the

angle of illumination for in-plane translation.

To measure in-plane translation a double exposure

is made. The film is exposed once prior to the object motion

and once after the object motion. If the translation is

greater than the speckle size bs then the resultant negative
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of the image plane will contain pairs of identical speckle

patterns as is seen in Fig. 19d. The speckle pairs will be

separated by a distance ML. The separation ML of the speckle

pair can be measured directly by microscopic examination of

the film. Alternatively, the translation can be measured by

the optical system seen in Fig. 19a. For this Fourier trans-

forming system the beam is first collimated. It is then sent

through the transforming lens. The specklegram is then

placed behind the Fourier transforming lens. The collimated

beam then passes through the transforming lens and the

specklegram and the speckle pairs recorded on the specklegram

form Young's fringes in the back focal plane of the trans-

forming lens as is seen if Fig. 19c. The bright central spot

seen in Fig. 19c is formed by undiffracted light transmitted

by the specklegram. Each pair of the corresponding speckles

act as a pair of identical sources of coherent light which

form Young's fringes. Since all speckle pairs are separated

by the same distance M, all of the Young's fringes overlay

to form the pattern shown in Fig. 19c.

Interpretation of the fringes is straight forward.

As in a Fourier transform, the fringe orientation is normal

to the in-plane translation L. The magnitude L of the trans-

lation can be determined by applying equation (117). The

speckles on the transparency are separated by a distance ds;AfT
the fringes will have a spacing df - T . The in-plane

translation of the object is given therefore by
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X f
(128)

where A is the wave length of the laser light used to form
the fringes, fT is the focal length of the tranforming lens,

M is the magnification of the imaging system used to record

the specklegram, and df is the fringe spacing.

In-plane rotation is the clockwise or counter-

clockwise rotation of a rigid body. The recording or

imaging system for in-plane rotation is identical to that for

in-plane translation. Another type of optical processing

system must be utilized. Due to the nature of rotational rigid

body motion every point on the body will undergo a differing

amount of translation. Therefore, the specklegram must be

analyzed in a point-by-point fashion. The optical processing

system for in-plane rotation is seen in Fig. 22a. Fiaure 22b

shows the different fringe patterns that are obtained from a

counter-closkwise rotation about the plates center. Th4 fringe

spacing is again inversly proportional to the point motion while

the fringes are 900 to the direction of the relative motion

of the body.

4. Out-Of-Plane Rotation Measurement (TILT) /72, 537

Tilt is out-of-plane rotation. Tilt will be measured

using a two-exposure speckle photograph. The experimental

setup is identical to that seen in Fig. 19a utilized for

in-plane translation with a slight modification. Instead of

focusing the imaging system on the image, the focus will be
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placed in the back focal plane or at infinity. Again, a

speckle pattern with characteristic size b = 1.22XF will

be formed in this plane.

7
II

, .

Film

Figure 20. Two-exposure speckle photography for measurement
of tilt. Light rays contributing to the forma-
tion of one speckle are shown. From Vest /-53-7

Each speckle is formed by all light scattered in a

particular direction, as is indicated in Fig. 20. If the

object is translated in its own plane L = Lxt + Lyj, the

speckle pattern remains stationary; however if the object

tilts by an angle y , as in Fig. 20, the speckle pattern

in the back focal plane will translate. Each ray contributing

to the formation of a single speckle leaves the object surface

at a different location y, but all travel in nearly the iden-

tical direction. When the object is tilted by an amount y,

there is a systematic change of relative phase among these
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rays. The phase shift can be written

S -(129)

where K is the unit direction vector of the illumination,
1

and K2 is the unit direction vector of the rays contributinq

to the speckle under consideration. For the configuration of

Fig. 20, L = -yyK and

k,- 0, k1, - -sine, kj, - -cos$#,

(130)

and k -0, k2, 0 0, k2, 1; (131)

therefore

27r (132)

Equation (132) describes a linear variation of nhase

with y, so the effect is as if all the rays contributing to

a single speckle tilted by a small angle, (1 + cosei)y

The corresponding displacement in the focal plane can be cal-

culated using equation (133).

Figure 21. Spatial filtering light of an off axis plane
wave focused to an off axis spot by a thin lens.
From Vest C537
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Figure 21 shows what can be considered to be a plane

wave indicent from an off-axis object point located a large

distance away, that is, £o This light will be focused
0

to an off-axis spot in the back focal plane. If the plane

wave propagates at an angle with respect to the optical axis,

it will focus to a point a distance df from the axis, where

df = f tana (133)

We are concerned primarily with the paraxial case;

hence a will be small, and

tan a = sin a = a (134)

Then the translation of the speckle in the back focal plane,

ds , will be

ds = f(l + cos 6i)y (135)

where fT is the focal length of the transformina lens. If

the angular aperture of the lens is not too large, the trans-

lation of the entire speckle pattern will be given by

equation (135).

To measure tilt, the film is placed in the back

focal plane of the lens. If a 35 mm. camera is used, the

camera is focused at infinity instead of on the object. A

double-exposure speckle photograph is then taken of the ob-

ject in the infinite focus position. The object is exposed

once before tilting the object and once after the object is

tilted. The transparency formed by developing the film is
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then illuminated by a converging spherical wave formed by

a lens of focal length fT' as in Figure 19b. This will form

a speckle pattern modulated by cosinusoidal fringes of spacing

df = A fT/ds , so the tilt of the object is given by

' f(1+cosdf (136)

Several extensions and applications of the pre-

viously discussed concepts of speckle photography exist for

the analysis of vibration and strain. Theory for each of

these two areas will be discussed here briefly.

5. Vibrational Analysis /6, 20, 30, 51, 537

In-plane vibrations can be measured by time-average

speckle photography. /6, 207 If the object of Fig. 19a

vibrates harmonically as a rigid body, L (t) = (Lxi + Lyj) cos wt.
2 2

Where L = (Lxi2 + Lyj ) is the amplitude of the vibration.

A time-average exposure will record speckle streaks of length

2ML. The speckles spend most of their vibrational period

near two ends of the streaks; therefore, if the film is pro-

cessed using the system of Figure 20b, the fringes observed

in the back focal plane will be similar to those caused by an

object translation of 2L. Specifically, the form of the

fringes that modulate the speckle pattern in the back focal

plane is described by the square of the zero order Bessel

Function

[O2['T) (137)
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where x' is the coordinate parallel to the direction of

motion. The amplitide of the vibration is determined by

measuring the distance df between the dark fringes to the

left and those to the right of the bright spot. The fringes

occur where the argument of J equals ± 2.4, so
0

L - 0.76 Aft , (138)

where X is the wave length of the laser light used to form

the fringes, fT is the focal length of the fringe imaging

lens (transforming lens), and M is the magnification of the

imaging system used to record the speckle photograph.

6. Strain Analysis /7, 4, 9, 15, 31-34, 40, 537

If the object under study is now strained during the

experiment, displacement varies from point to point on the

object surface. Hence a different method of analyzing the

speckle photographs must be devised.

Using the system of Fig. 22, the speckle photograph

can be examined one region at a time by illuminating it with

a small beam such as an unexpanded He-Ne laser bean as shown

in Fig. 22a. The speckle pattern on the transparency will

diffract this beam into a diverging cone of angular extent

I(139)

where f/D is the F number of the lens used to record the

speckle photograph.
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Lae

Tranwweny Viewing
(uWklo photograph) wam

or film

(a) Specklegram processing system

(b) Appearance of fringes at various locations on the
specklegram of a rigid plate that was rotated about
a normal axis through the center 0.

Figure 22. Formation of fringes by illuminating a double
exposure photograph with a thin laser beam.
From Vest / 53_7

If the small illuminated region contains nairs of

identical speckles displaced by a distance ds, the light in

tie resulting pairs of diffraction cones will interfere to

form a diffraction pattern modulated by Young's fringes. ', 4,

537 If the fringes are viewed from the photograph at a dis-

tance Z from the transparency, their spacing will 
be df = --

s

Since d. M ML, where M is the lateral magnification of the

optical imaging system used to record the speckle photograph

and L is the unknown displacement,

M4 (140)
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Equation (140) gives the displacement of 'oints in

a single small region of the object surface. The fringes

are normal to the local in-plane motion.

An alternative method of analyzing strain was dis-

covered by Professor Y. Y. Hung. It is the Speckle Shearing

Camera /327. This method utilizes an image shearing inter-

ferometer camera.
COFRENT

. LIG4r SOURCE
x

. IMAGE SHEARI NG

. CAMERA

(a) Schematic diagram of optical setup of an image
shearinq camera.

WEDGE
x 6x '2-

-. A T $X.

: Z Y!

J A - o -- ----- - D , -

O CT LENS I I E

(b) Imaging detail of the image shearing camera.

Figure 23. Two exposure speckle photography usinq image
shearing camera for strain and vibrational
measurements. From Hung /-32_7

The image shearing camera of Fig. 23a has its lens

divided into two parts by a thin glass wedge. The lens

images the object, which is illuminated by a diverging beam,
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inclined at an angle e. to the viewing direction. Since the1

rays passing through the glass wedge are deviated, the two

images, (one focused by each half the lens) are laterally

sheared with respect to each other as is seen in Fig. 23b.

Let the plane containing the prism angle be parallel

to the x-z plane. Rays passing through the wedge are laterally

shifted in the x-direction. Assuming that the wedge is placed

very close to the lens, the amount of shift dx' in the image

plane is

6%' iMO - 1.

(141)

Where Di is the image distance from the lens, P is the re-
1

fractive index of the prism, and a is the prism angle. The

equivalent shift 6x on the object is

6x a x')IM (142)

Where M is the magnification, which is the ratio of the

image distance D. to the object distance D from the lens.

Thus,

(143)
ax 6' (Do/Di) Do(y - 1)C

The image shearing camera brings the rays from point

P(xy) on the object to meet with that from the neighboring

point P(x + dxy) in the image olane. Since the object is
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coherently illuminated, the rays from the two points inter-

fere with each other in the film plane.

The image shearing camera focuses two laterally-

sheared coherent images in the film plane which interfere

with each other. The direction of shearing depends on the

orientation of the plane containing the wedge angle. Thus,

by rotating the wedge on the wedge-lens assembly about the

axis parallel to the viewing direction, the direction of

shearing can be varied. The amount of shearing can be

adjusted, as indicated in equation (143), by varying the wedge

angle a as well as the object distance D When the object

is deformed, a relative displacement between two points pro-

duces a relative optical phase change A given by:

A - 2r 1(1 + cose ) (xdx,y) -w(x,y)l + (144)

sinel (x+dx,y) -ux,y

where u and w are the displacement components in the x and

z directions, respectively. If the shear dx is small, the

relative displacemnts may be approximated by the disolace-

ment derivatives and thus equation (144) becomes

'& ZL {(1 + cos e) (a'i + sin (15

where the strains are given by

au y v au 3v
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The term 8x is equivalent to the gage length. Should the

shear be in the y direction, the derivatives in equation (145)

would be with respect to y. This is achieved by rotating the

0 0camera lens 90 If the object is rotated 90 about the z

axis, u is replaced by v, the displacement component in the

y direction.

By taking a double-exposure recording with the object

being strained between exposures, a speckle fringe pattern

depicting A will be generated. Dark fringes occur when

A - Nw (146)

where N w 1, 3, 5, 7

aw

To measure r- this derivative may be isolated

using normal illumination (8 = 0).

However, it is impossible to isolate au/ax. To

au
achieve this I- isolation requires recording two fringe

patterns using two different illumination angles; then au

awcan be separated from T- on a point by point basis using

the following equation:

au M [ N1 ( + cose 2) - N2 (l + cosel) (147)
T 2 MLsine I (1 + cose2) - sine2 (1 + cose I)J

where N1 and N2 are fringe orders corresponding to illumi-

nation angles 0I and 82 respectively.
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G. FILM THEORY

1. Film And ODtical Requirements

The sensitivity measurement by speckle photography

is limited by the requirement that speckle motion in the film

plane must exceed the characteristic speckle size,

b - 1.22 ir If f/2.8 is used as a camera aperture#

then b. - 2.16pm and a film resolution of about 462 lines/mm

is required. A high resolution film is necessary for speckle

photography. S0253 film was used for all speckle experimen-

tation. This film has a resolution of 2500 lines/mm. The

maximum frequency of the speckle pattern is fMAX () 564.

Since film speed varies inversely with resolution, relatively

long exposure times were required.

2. Measurement Limitations

The upper limit to measurable displacements or tilts

is set by the decorrelation of the two speckle patterns. This

is evident because processing of speckle photographs requires

formation of Young's fringes by diffraction of light by pairs

of identical speckles. A loss of correlation will be caused

if strains are large enough to alter the microscopic structure

of the opaque surface under study. Loss of correlation also

occurs when motions are sufficiently large that the aperture

of the object forming lens samples an appreciably different

portion of the wave front scattered by the object during

the two-exposures. When this occurs, only a fraction of the

speckle pattern recorded on the photograph consists of '.airs

of identical speckles, so the fringes they generate are washed
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out by the light diffracted by the rest of the speckle. A

rough estimate of the sensitivity range of speckle photography,

based on experiments reported, is that motions resulting in

speckle translations of the order of 15-200 im in the film

plane can be measured. /6, 20, 537 In the upper limit, the

object translation equals about ten percent of the diameter

of the entrance pupil of a typical camera lens at f/4.

The practical sensitivity range in terms of actual

object translation or tilt depends on object size, magnification,

and required depth of focus. /-21, 447 In general, the range

extends to motions as large as about 1.5 mm. Above this limit,

direct measure by ordinary double-exposure photography is more

practical. The lower limit of the range is about Sum , but

depth of focus requirements usually raise this limit to about

100 Um or higher. Hence, in practice there is a large gap

between the maximum displacement measurable by holographic

interferometry and the smallest displacement measurable by

speckle photography. /44 7
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III. EXPERIMENTAL ANALYSIS AND PROCEDURES

A. FILM

Two types of film were used during this thesis experi-

mentation. During the Fourier transform, speckle micro-

photography, and basic Fraunhofer diffraction studies, Polaroid

positive negative 4x5 land film with an ASA (55) was used.

An f/16 aperture and an exposure time of between 1/250 sec.

and 1/125 sec. were used for optimim results. A Kodak special

order (S0253) film was used for all speckle photography. A

Pentax 35 mm camera was used with either a 55 or 85 mm focal

length lens. For object speckle photography using the 85 me

lens with an M - .11 and an F - 2.8 for optimum results an

exposure time of .5 sec. was used. For object speckle photo-

graphy using the 55 mm lens with an M - .137 and an F = 4

and an object distance of 450 me an exposure time of 2 seconds

was used for optimum results. For fringe photography only

the 55 mm lens was used with an F - 2.0 with an object distance

of five feet giving exposure times of 5-7 min. depending on

the fringe spacing.

The resolution of the S0253 film is very high (on the

order of 2500 lines/mm). The higher resolution demanded

longer exposure times, but this higher resolution was needed

as will be seen during the discussion of speckle size.

Lastly, the film developing was done in Kodak D-19 de-

0
veloper 70 F for 5h minutes with constant aqitation. ThenA



using Kodak rapid fixer, the film was fixed for 3 minutes.

A film bath followed which usually required 30-40 minutes

of constant water flow due to the heavy blue tint of the

S0253 film.

B. SPECKLE SIZE

As was seen in the theory section under speckle size

from the governing equation (126) speckle size is a function

of the wave length of light and the F number of the imaging

lens. Table 3 tests the various F numbers and their corre-

sponding speckle size, bs, when using a He-Ne gas laser as

was used in the experimentation for this thesis. The wave

length of a He-Ne gas laser is A - .6328.10"3m.

TABLE 3

Speckle Size Versus Lens F Number And Film Resolution

F 1.9 2 2.8 4 5.6 8 11 16 32

DsX(10" 3m" 1.4668 1.544 2.16 3.088 4.323 6.176 8.492 12.352 24.704

resolution 681 647 462 323 231 161 117 80
(lines/mm)

Looking at the optical system used to record the speckle,

lens magnification should be included in the speckle calcu-

lation. /-3, 47 Fig.-24 shows the object-to-image position

which relates the lens equation to the magnification.
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Obim

Figure 24. Formation of a real image with a thin, spherical

lens.

Assuming the size of the speckle dot to be equal to the

Airy disk in the image plane

b . 1.22Xa b from equation (125).8D b

where a - z in this case. From the lens equation (127)

1 =1 +1

(a+b) or f a + b) - ab

which relates the speckle size to the image magnification,

M. It is seen that
1.22 Xf (a + b) 1.22 f (148)
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where

M = - is the magnification of the imaging system.

Fig. 25 shows the relationship between the magnification

M and the speckle size b5 .

Another area of concern is the effect of magnification

change during laser speckle photography. C457 An assumption

is made that during the speckle photograph no magnification

change occurs, where in fact a change does take place.

For example, in the plane stress case, a magnification

change arises from the Poisson's effect whereby the plane
model undergoes lateral thickness changes when loaded in

its plane.

In the tilt case, a magnification change occurs due to

the out-of-plane motion toward the camera thus changing the

object distance and the magnification M. This effect of

change of magnification is examined in detail by Archbold

and Ennos /-S,, 7, 107 and Dedretti and Chiang /-457 The

problem of magnification change can be minimized by using

imaging lenses of long focal lengths.

The Airy disk size limitation on speckle size consider-

ations for resolution is a good approximation, but subpeckle

size measurements can be effected. /54_7 This lower measure-

ment range can easily be reduced to one order of magnitude of

the usual Airy disk limit. The method of subspeckle size

speckle photography measurement is discussed in detail by

Vikram and Vedam 47. It requires a known lateral movement
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being measured. The orientation of the Young's fringes

gives the unknown deformation.

There are two other fundamental limitations in the

recording methods of this thesis. First, laser speckles are

three dimensional. Speckle patterns decorrelate in a distance

which is small compared to conventional depth of field for

an imaging lens system /-3, 47. Decorrelation is particularly

severe with lens apertures wider than about f/4. Most

speckle photography of this project was done with a lens

aperture of f/2.8 therefore decorrelation of speckle was a

problem. An increased image magnification would reduce the

problem of the lens aperture effect, but again a low magni-

fication was used for most experimentation (M = .11).

Second, speckle photography is significantly vulnerable to

lens aberrations. Ennos recognized this effect and published

some data with regard to in plane rotation. /-5, 107. A more

indepth study of the problem is given by Stetson /46_7.

Stetson's figures showing a comparison of Young's fringes

achieved by a well-corrected copy lens at unity magnification

and speckle halos from a normal camera at the same magnifica-

tion vividly illustrate the loss of fringe visibility due to

lens aberations.

C. FOURIER TRANSFORMS

In order to better understand diffraction, lens resolution,

spatial filtering and other areas of optical physics, a pre-

liminary study of Fourier transforms was conducted.
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The first experiment that was conducted consisted of

comparing differing rectangular aperture spacing. Fourier

transforms were achieved using Ronchi ruling combinations of

100-300 ines/mm and 100-450 lines/mm. The results of the

100-300 lines/mm Ronchi ruling is seen in Fig. 26.

Figure 26. Fourier transform of a 100 and 300 lines/mm

Ronchi ruling combination.

Three types of filtering were conducted. Using two

Ronchi rulings of 300 lines/mm, a rectangular aperture grid

was setup. First, the center of the Fourier transform of the

rectangular aperture was filtered, which eliminated all lines

from the reproduced grid pattern as seen in Fig. 27a.

Second, the horizontal lines were filtered out of the
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Fourier transform of the rectangular aperture, which elimi-

nated all horizontal lines from the reproduced grid pattern.

Last, the vertical lines were filtered out of the Fourier

transform of the rectangulary aperture, which eliminated the

vertical lines from the grid pattern as is shown in Fiq. 27b.

(a) Image pattern as a result of filtering the center
of the Fourier transform.

CEI32M
(b) Image pattern as a result of filtering the

vertical lines of the Fourier transform.

Figure 27. Fourier transform filtering using a rectangular
grid.

Figure 28 shows the lab setup for all Fourier transform

experimental analysis. A 1.5 milliwatt He-Ne gas laser with

a X = 632.8 nm was used to produce the monochromatic wave.

A combination 1OX microscope objective combined with a 25 Um

spatial filter were used to expand the beam. All lenses in

this Fourier transform arrangement were spherical double con-

vex lenses with a focal length fT of 177.8 mm. Another lens

collimated the beam. The grid was then placed in the ootical

system followed by the transforming lens. The grid pattern

was then reproduced after passinq through the beam filter.
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A 1X microscone lens was used to expand the beam onto a

mirror which then reflected the reproduced grid image on a

frosted glass screen. A magnifying eyepiece enabled the

observer to view tihe image grid.

In order to process the double-exposure specklegram, the

Fourier transform system of Fig. 28 was utilized. This system

of fringe analysis was done using either the film prior to

or after the transforming lens as is seen in Fig. 15 b & c

and described in detail in the Fourier transform section of

this thesis.

D. IN-PLANE TRANSLATION AkND ROTATION

Figure 29 shows the lab setup for in-plane translation

and rotation. A 1.5 milliwatt He-He gas laser was used to

produce a monochromatic wave.

A double shutter was used to facilitate the double-ex-

posure speckle ohotogra3hinq system. A 40X lens with a 25 Um

spatial filter was used to exoand the beam. A 5' x 7"

2024-T4 Aluminum plate was used for the object. A Pentax

35 nun camera with an 85 mm lens was used to record the image

at an object distance of 850 mm. Optimum exposure times for

this setup were h second for an F - 2.8.

For in plane translation, a micrometric holder which read

in 1/10,000 in. and I turn - 1/40 in. was used while for

in-plane rotation a micrometer holder which read in .01 deqrees

and 1 turn - 0.1 degrees was used.

Translation of .003 in. to .07n 'in. were measured.

A plot of actual translation versus fringe calculated
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translation can be seen in Fig. 30, while Table 4 shows

calculation of fringe spacing and fringe density for each

translation.

The average error for the overall translation data was

calculated to be one percent. Both Fiq. 30 and the calcu-

lated error show that there was excellent correlation between

the actual and calculated translation. Fig. 31 (a-f) show
fringe spacing for various translations. As in the Fourier

transform experimentation done previously, it can be seen

that for small translations, speckle pair spacing is small,

the aperture of diffraction on the specklegram is small and

the resultant Young's fringe spacings are large, and con-

versely for large translation motion, the speckle pair spacing

is large on the specklegram, therefore a large diffraction

aperture resulting in Young's fringes which are closely spaced

together.

Figure 33 shows fringes produced from specklegrams of

various rotations. Seeing that each point in the specklegram

field is rotated a different amount, individual points on the

specklegram were inspected.

As seen in Fig. 32-33, fringes showing almost pure trans-

lation in both the x and y direction were observed at the

four quarters of the specklegram. At the center of the

specklegram no relative displacement occurs, therefore Young's

fringes are not visible. At the outer edge between the

quarter points of the specklegram, diagonal fringes show the

existence of both x and y components of the rotation. Moving
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TABLE 4

Calculation Of Fringe Spacing For Various Translations

A actual lines area d L L(in Error x 1
Xl.n001 aX.001 in. =-0
(in.1 per area (mm) (mm) exp. exn

8.61 5.5 600 109.09 .2259 8.89 .0325

12.31 8 600 75.0 .3286 12.9 .0479

18.45 12 600 50.0 .493 19.4 .0515

24.87 16 600 37.5 .656 25.8 .0374

30.06 18 600 33.33 .7395 29.1 .0319

31.98 20 600 30 .8215 32.3 .010

38.58 24 600 25 .986 38.81 .0059

40.37 15 365 24.33 1.013 39.88 .0121

45.12 17 365 21.47 1.148 45.20 .0177

50.32 19 365 19.21 1.283 50.5 .0357

55.51 21 365 17.380 1.4182 55.8 - .0413

61.95 23.5 365 15.332 1.587 62.48 .0855

65.05 25 365 14.6 1.688 66.47 .0218

70 26 365 14.03 1.755 69.12 .0126

75 28.5 365 12.807 1.9247 75.77 .0103

Lexv = X Zf/Mdf .6328-10-3ram

Zf I 3896.2 mlh

M - .11

Mean Error - 3.057%
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(a) Fringes generated due to 0.005 inch translation.

(b) Fringes generated due to 0.010 inch translation.

Figure 31. Fringe spacing for various in-olane translations,
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(c) Fringes generated due to 0.020 inch translation.

(d) Fringes generated due to 0.030 inch translation.

Figure 31 (Continued)
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(e) Fringes generated due to 0.040 inch translation.

(f) Fringes generated due to 0.050 inch translation.

Figure 31 (Continued)
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Figure 32. Double exposure rotation sDecklegram showina
location of various fringe observation points.

(a) Lack of fringes observed at Point A.

Figure 33. Young's frinqes produced from various points of
observation on a rotation specklegram as indi-
cated in Figure 32.
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(b) Rotation fringes observed at Point B on
the specklegran.

(c) Potation fringes observed at Point C on
the speckleqram.

Figure 33 (Continued)
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(d) Rotation fringes observed at Point D on

the specklegram.

iI

(e) Rotation fringes observed at Point E on

the specklegram.

Figure 33 (Continued)
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(f) Rotation fringes observed at Point F on
the specklegram.

(q) Rotation fringes observed at Point"G on
the specklegram.

Fiqure 33 (Continued)
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(h) Rotation fringes observed at Point H on
the speckleqram.

IVI

(i) Rotation fringes observed at Point I on
the specklegram.

Figure 33 (Continued)
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inward from each of these ooints toward the center of the

specklegram, the relative displacement is less, as would

be expected, the Young's fringe spacing increases.

E. OUT-OF-PLANE ROTATION -(TILT)

Figure 34 shows the laboratdry arrangement of equiprent

for imaging tilt double-exposure specklegrams.

The laboratory setuo is identical to the one used for

recording translation and rotation with two differences.

First, after the beam is expanded, it is collimated prior

to illuminating the object. This collimation process is

necessary for recording all out-of-plane motion using this

type recording system. Second, instead of recording the

image in the image plane, the camera is focused at infinity,

placing the image in the back focal plane of the camera. An

F number of 2 was used at an object distance of 450 mm with

an exposure time of 3 seconds per exposure for optimim re-

sults. A tilt range of 1.5" - 15" was tested producing fringes

as seen in Figures 35 a and b.

Calculations were made of fringe spacing, tilt, and tilt

angle and compared with the actual tilt observed during

experimentation. Results of these calculations are tabulated

in Table 5.

A graphical comparison of calculated tilt angle versus

calculated fringe is observed in Fig. 36.

Both the graph, the tabular results, and the mean error

analysis confirm that there is excellent correlation between
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(a) Fringes observed due to a tilt of 3" (double
primes denote seconds of arc).

(b) Fringes observed due to a tilt of 10".

Figure 35. Young's fringes produced from various angles
of out of plane rotation (tilt).
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TABLE 5

Tilt Calculations

y actual (sec) df(mm) Y calc. (sec) Error

15 6 14.414 .039

10 8 10.810 .081

5 18 4.804 .039

1 4 22 3.931 .017

3 27 3.203 .067

2 37 2.337 .168

1.5 51 1.695 .13

Mean Error = 7.70%

Tilt calculation governing equation and parameters

y x Z/f(I + cos8 i)d (in degrees)
1 f

where

A- .6328*10"3 mm

Z = 3896.2 m
f- 55 mm

- 300

i i iii i136
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the actual tilt angle observed during experimentation and

the fringe calculated tilt angle.

F. MEASUREMENT OF DISPLACEMENTS DUE TO VIBRATION

Figure 37 shows the laboratory setup for the in-plane

vibrational experimentation that was conducted in conjuction

with this thesis. The equipment required for vibrational

analysis was the same as for tilt experimentation with the

exception of the plate holders, excitok, power transformer

and oscilliscope.

The plate holder was modified to enable small amplitude

in-plane vibrations to be transmitted to the 5 x 7 aluminum

olate. A piezoelectric excitor linked in series with a

spring having a large spring constant enabled vibrational

amplitudes of .1 - 2 mm range to be transmitted.

The image was recorded with a 35mm Pentax camera using

the double-exposure speckle technique described previously.

An F - 2.8 with an 85mm lens using an exposure time of 2

seconds per exposure were used to record the image at an

image distance of 850 -m and a magnification of .11.

G. STRAIN ANALYSIS

Figure 38 shows the experimental setup for the strain

analysis conducted in this thesis. With the exception of

the plate holder and a modification to the imaging camera,

which will be discussed later, the equipment setup is iden-

tical to the tilt experimental equipment system discussed

previously.
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The image shearing camera was used to record the double

exposure specklegram. In the theory section, the image

shearing camera was described in general. Both a 55mm and

85mm lens were used with the Pentax 35m camera. The shearing

prism was a 10 glass wedge with an index of refraction of 1.57.

With the 55mm lens an image distance of 450mm and an F of

2.0 with an exposure time of 3 seconds per exposure was used,

while with the 85mm lens an image distance of 850mm and

an F of 2.8 with an exposure time of 2 seconds per exposure

was used. The image shearing camera gives a double-exposure

specklegram which is processed using the system seen in Fig. 39.

viqure 40 shows the fringe pattern obtained from the

processed image shearing specklegram. This specklegram can

be processed in white light without a lens if the shearing is

adequate.

To produce the fringes of Fig. 40, a 6 in. x 8 in.

rectangular aluminum plate with its surface sprayed flat red

was used. The plate was securely clamped along its four

boundaries. With collimated illumination with a He-Ne laser

a double exposure of the image was photographed. The plate

was displaced at the center 0.0005 between exposures.

A no fringe area was seen during experimentation in areas

of plastic deformation. During plastic deformation there is

no motion of that area of the body, therefore there are no

local fringes developed in any area where plastic deformation

is experienced.
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Figure 39. Double-exposure specklegram optical processing
system used to analyze strain fringes. From
Hung f/32_

Figure 40. Fringe pattern obtained from the double-exposure
specklegram for a displacement at the center of
the plate of 0.0005 inches.
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Compared with other methods of speckle photography and

interferometry, the image shearing camera was found to pro-

duce superior fringes. Besides the improved quality of

fringes there are several other areas where the speckle image

shearing camera improves over conventional speckle rethods or

holography.

First, the setup is relatively simple and does not require

precision alignment of optics. Second, it does not require

the special vibrational isolation that accompanies holographic

measurements. Third, the need of coherence in the illuminating

light source is minimized. Although a collimated beam was

utilized, it was not required. Fourth, it provides a wider

and more controllable range of sensitivity. The sensitivity

can be changed by either changing the illumination angle ai

or the amount of shearing. Fifth, the strain is measured

directly by the image shearing camera.

While this technique works well for small shearing effects,

like other speckle techniques the image shearing method is

highly susceptible to decorrelation when the object under-

goes large, tilt, translation, or strains. This decorrelation

deteriorates the fringe visibility.
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IV. CONCLUSIONS AND RECOMENDATIONS

A. CONCLUSIONS

The following conclusions have been drawn from the research

conducted during the course of this project.

A comparison of holographic interferometry to speckle

metrology shows that both systems of measurement have favor-

able points which support further research in each area.

The simplicity of equipment arrangement for speckle

metrology requires no precision alignment of optics as is re-

quired in holographic measurements /7_77. Speckle metrology

requires no vibrational isolation system. The use of multi-

node lasers is possible because speckle metrology minimizes

the coherent length of the light source required for accurate

measurements. There is a wider range of sensitivity and an

ease of sensitivity variation in speckle metrology that is

not found in holography /34, 35, 537. Speckle metrology

requires a much lower film resolution. Decorrelation of the

speckle pattern due to large tilt, translation, or strains

deteriorates the fringe visibility. Speckle produced fringes

are highly susceptible to lens aberration. Even at best,

speckle produced fringes are of poorer quality than holographic

fringes. Holographic interferometry presents a much broader

band of measurement /-53_7. Three dimensional motion can be

studied using holography much more readily than can be

achieved by speckle metrology _53 7.

From the previously listed conclusions, it is seen that

holographic interferometry used in conjunction with speckle

134



metrology can provide accurate, wide ranqe, hiuhlv sensitive,

means of metroloqy to Naval Enqineering in aeneral and Naval

shipyards specifically.

Specific conclusions derived by actual experimentation

are as follows:

measurements of in-plane translations were measured for

a range of 0.001 inches to 0.07 inches with a mean error of

less than four percent.

Actual measurements of in-plane rotation were not made,

but rather a comparison of relative fringe spacing from indi-

vidual point inspection of the specklegram was performed.

Direction of rotation and relative size of point displacement

could be determined from the resultant frinqe patterns.

Measurements of out-of-plane rotation (tilt) were made.

The range of experimantation of 1.5" to 15" was too small and

too few points were sampled to effectively conclude that the

accuracy of measurement was as precise as experimentation in-

dicates. Also a more effective method of measuring actual

tilt should be used to insure the actual tilt measurements

are exact.

Vibrational analysis of both in-plane amplitude measure-

ments and modal shape studies were conducted with limited

success. The fringes produced from in-plane vibrations gave

good results, but too small an amplitude range and too few

points were sampled to make any conclusions concerning the

effectiveness of this system.
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Strain analysis using the image shearing camera produced

fringes which showed the strain field over the entire plate

due to a center displacement of approximately 0.0005 inches.

Object and image distances can be varied to incregse the

range of shear observation; but this was not done. Therefore,

the effectiveness of the image shearing camera for a wide

range of measurements can not be stated. Good fringes were

achieved using this system for a limited range of shear.

Each area of study, i.e., translation both in-plane and

out-of-plane, vibrations, and strain, is a broad enough field

sufficient to support thesis investigation.

B. RECOMMENDATIONS

The field of speckle metrology is in its embryo stage of

development. New techniques and methods of analysis and

measurement are being discovered continually. The only re-

striction placed on this field is the imagination of the

experimenter.

It is recommended that several of the other methods of

speckle metrology be investigated. Experimentation in two

and four aperture Fourier filtering analysis of two and

possibly three dimensions is being conducted with considerable

success L5, 7, 9, 21, 53/. Dual beam speckle interferometry

for strain component isolation and vibrational analyses is

achieving results comparable to that of holography f-15, 30,

37, 40, 51, 537.
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In the area of in-plane rotation, it is recommended that

x and y component isolation be conducted to measure both

direction and relative amount of translation using fringe

spacing and orientation.

The system of experimentation used to measure tilt was

found to be highly effective and accurate. Two improvements

could be made in this area. First, a more accurate method

is needed for measuring the actual out-of-plane the tilt

which has occurred. This would validate the error analysis

conducted in this project. Second, an increased range of

measurement could be achieved by varying the object and

image distances.

The surface of vibrational and strain analyses were barely

scratched during the course of this project. In conjunction

with these areas of study, it is recommended that speckle

metrology be utilized for beam analysis. Deflection, slope,

and moment measurements could easily be effected using the

dual beam -5,6,10,217, Fourier filtering f21,537, or shear

camera /31-337 methods discussed previously. Vibrational

analysis should be conducted, and the results compared with

those achieved using holography.

The area of heat transfer is relatively untouched by the

literature in conjunction with the rise of speckle metrology.

It is felt that transient, two-dimensional, heat transfer

problems could be analyzed using speckle metrology methods.

Analyses of transient and real time phenomena using

television speckle recordings have been conducted with
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relative success by both Maddux /-1_7 and German Da Costa

of Simon Bolivar University /-217. This area of study could

be undertaken for less than $5,000, greatly expanding the

field of speckle metrology for the Naval Postgraduate School.

Currently in industry speckle metrology is being utilized

for crack detection and non-destructive testing /-21 7,

pressure vessel inspection /-217, and stress concentration

analysis /21_7. The applicability of speckle metrology to

Naval Engineering should be highly evident by the remarks

entertained in these recommendations and conclusions. Again,

as mentioned previously, this is a relatively new science;

the potential for growth is constrained by the intensity of

the analysts' inquisitiveness. Further studies are con-

sidered a must, and they are assumed to be very enlightening

and positive contributors to modern science and Naval Engineering.
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APPENDIX A

Notes Added During Proof

After the thesis was approved, the author continued

research because of extreme interest in the development of

speckle metrology. The image shearing camera described in

the Strain Analysis section of this thesis was used to ob-

tain slopes of modal amplitudes at various frequencies and

compare these results with those achieved by Fahey /X-17.

I. VIBRATION THEORY

The specimen of Fig. 41 undergoes a steady state

sinusoidal oscillation represented by:

w(x,y,t) - A(x,y) cos (wt + e)

where w(x,ypt) - normal displacement of a point P(x,y) at

a time t.

A(x,y) - modal amplitude function

- circular frequency

e - arbitrary phase

and if normal incidence of light is employed, then A

is a function of time given by:

A(x,y,t) - ax aw (x4ytt)
ax

Thus 12 (x,y) is a time dependent function given by,

I 2 (x',y',t) = 2A2 [1 + cos 2 7r [2Bx' + fl(x',y')

" f2 (x',y') + AIxy',t)]]
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where 12 is the intensity distribution received by the

photographic plate. If the film is exposed to 12 (x',y' ,t)

for a time T which is large compared to the period of

vibration, the recorded intensity is an integration of

12 (x' ,y',t) over the time T given by:

Ii(x',y') = fr I2 (x',y',t)dt

where Ii(x',,y') is the integrated intensity. The above

integration yields:

XIx',y') - T [1 + cos 2r Bx' + f (x',y') - f2 (x',y')J

*1 J [ 37 Sx 3A (x,, y),x
This is a case where a high frequency term is amplitude

modulated by a zero order Bessel function.

Thus Moire fringes will be formed when:

27r aA(xy}

J0 [a6X LX ] -O

Again, the carrier fringes are not visible by the eye.

Therefore Fourier filtering is required to make the fringes

visible. See Fig. 39.

Figure 41 shows the laboratory equipment arrangement

for imaging the slopes of the modal amplitudes. The equip-

ment arrangement is identical to the setup of Fig. 38 for

strain analysis with one exception. A piezoelectric excitor

was placed behind the plate and excited the center of the

plate at various frequencies and amplitudes using the oscil-

lator and transformer described previously in the vibrational

section of this thesis.
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Calculations were made previously by Fahey CA-17

from Leissa -A-27 for the frequency parameters fn for an

all sides clamped rectangular plate.

m n f

1 1 27.01

2 1 65.50

1 2 41.72

2 2 79.81

The fundamental frequencies calculated by Fahey /-A-17

were:

W " 327.0 Hz

W 1,2 - 506.2 Hz

02,1 - 794.8 Hz

W 2#2 - 968.45 Hz

Fundamental frequencies were found experimentally to be:

tIoI - 258 Hz

wl,2 - 548 Hz

w2,1 = 752 Hz

w2,2 - 1047 Hz

Modal amplitude fringes were obtained for the three highest

frequency responses, while at 258 Hz fringes were unable to

be obtained due to the low amplitude of vibration achieved

by the excitor. (See Fig. 42a). A dark ring is observed at

142



(a) Slope of modal amplitude at 258 Hz.

(b) Slope of modal amplitude at 548 Hz.

.Figure 42. Slopes of modal amplitudes produced at various
resonant frequencies.
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(c) Slope of modal amplitude at 752 Hz.

(d) Slope of modal amplitude at 1047 Hz.

Figure 42 (Continued)
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outer plate where the circular first mode fringes would have

been seen had a larger amplitude been achieved.

As observed previously, although the fringes produced by

holography are much clearer no vibrational isolation is

needed nor is the precision optical setup required for speckle

photography. A relatively large range of amplitude variation

was achieved using the image shearing camera technique.

Further research is definitely required to enable the

author to make additional conclusions as to the effectiveness

of this technique.
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